320 research outputs found

    Running mass of the b-quark in QCD and SUSY QCD

    Full text link
    The running mass of the b-quark defined in DRbar-scheme is one of the important parameters of SUSY QCD. To find its value it should be related to some known experimental input. In this paper the b-quark running mass defined in nonsupersymmetric QCD is chosen for determination of corresponding parameter in SUSY QCD. The relation between these two quantities is found by considering five-flavor QCD as an effective theory obtained from its supersymmetric extension. A numerical analysis of the calculated two-loop relation and its impact on the MSSM spectrum is discussed. Since for nonsupersymmetric models MSbar-scheme is more natural than DRbar, we also propose a new procedure that allows one to calculate relations between MSbar- and DRbar-parameters. Unphysical epsilon-scalars that give rise to the difference between mentioned schemes are assumed to be heavy and decoupled in the same way as physical degrees of freedom. By means of this method it is possible to ``catch two rabbits'', i.e., decouple heavy particles and turn from DRbar to MSbar, at the same time. Explicit two-loop example of DRbar -> MSbar transition is given in the context of QCD. The advantages and disadvantages of the method are briefly discussed.Comment: 33 pages, 6 figures, 1 table, typos corrected, added references

    Exploiting the WH/ZH symmetry in the search for New Physics

    Full text link
    We suggest to isolate the loop-induced gluon-initiated component (gg→ZHgg\to ZH) for associated ZHZH production by using the similarity of the Drell-Yan-like component for ZHZH production to the WHWH process. We argue that the cross-section ratio of the latter two processes can be predicted with high theoretical accuracy. Comparing it to the experimental ZH/WHZH/WH cross-section ratio should allow to probe for New Physics in the gg→ZHgg\to ZH component at the HL-LHC. We consider typical BSM scenarios in order to exemplify the effect they would have on the proposed observable.Comment: 22 pages, 10 figures. v2: Minor changes; matches published versio

    Next-to-Next-to-Leading Order Higgs Production at Hadron Colliders

    Get PDF
    The Higgs boson production cross section at pp and p\bar{p} colliders is calculated in QCD at next-to-next-to-leading order (NNLO). We find that the perturbative expansion of the production cross section is well behaved and that scale dependence is reduced relative to the NLO result. These findings give us confidence in the reliability of the prediction. We also report an error in the NNLO correction to Drell-Yan production.Comment: 5 pages, 4 figures, minor change

    Finite top quark mass effects in NNLO Higgs boson production at LHC

    Full text link
    We present next-to-next-to-leading order corrections to the inclusive production of the Higgs bosons at the CERN Large Hadron Collider (LHC) including finite top quark mass effects. Expanding our analytic results for the partonic cross section around the soft limit we find agreement with a very recent publication by Harlander and Ozeren \cite{Harlander:2009mq}.Comment: 15 page

    The light CP-even MSSM Higgs mass resummed to fourth logarithmic order

    Full text link
    We present the calculation of the light neutral CP-even Higgs mass in the MSSM for a heavy SUSY spectrum by resumming enhanced terms through fourth logarithmic order (N3^3LL), keeping terms of leading order in the top Yukawa coupling αt\alpha_t, and NNLO in the strong coupling αs\alpha_s. To this goal, the three-loop matching coefficient for the quartic Higgs coupling of the SM to the MSSM is derived to order αt2αs2\alpha_t^2\alpha_s^2 by comparing the perturbative EFT to the fixed-order expression for the Higgs mass. The new matching coefficient is made available through an updated version of the program Himalaya. Numerical effects of the higher-order resummation are studied using specific examples, and sources of theoretical uncertainty on this result are discussed.Comment: 26 pages, 3 figures, matches version published in EPJ

    Towards Higgs boson production in gluon fusion to NNLO in the MSSM

    Full text link
    We consider the Higgs boson production in the gluon-fusion channel to next-to-next-to-leading order within the Minimal Supersymmetric Standard Model. In particular, we present analytical results for the matching coefficient of the effective theory and study its influence on the total production cross section in the limit where the masses of all MSSM particles coincide. For supersymmetric masses below 500 GeV it is possible to find parameters leading to a significant enhancement of the Standard Model cross section, the KK-factors, however, change only marginally.Comment: 20 pages; v2: modification of discussion of numerical effect, version to appear in EPJC; v3: eq.(18) corrected, minor correction

    Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders

    Full text link
    We consider the production of intermediate-mass CP-even and CP-odd Higgs bosons in proton-proton and proton-anti-proton collisions. We extend the recently published results for the complete next-to-next-to-leading order calculation for a scalar Higgs boson to the pseudo-scalar case and present details of the calculation that might be useful for similar future investigations. The result is based on an expansion in the limit of a heavy top quark mass and a subsequent matching to the expression obtained in the limit of infinite energy. For a Higgs boson mass of 120 GeV the deviation from the infinite-top quark mass result is small. For 300 GeV, however, the next-to-next-to-leading order corrections for a scalar Higgs boson exceed the effective-theory result by about 9% which increases to 22% in the pseudo-scalar case. Thus in this mass range the effect on the total cross section amounts to about 2% and 6%, respectively, which may be relevant in future precision studies.Comment: 29 page

    On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM

    Full text link
    We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.Comment: 18 pages, 4 figure

    Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass

    Full text link
    The inclusive Higgs production cross section from gluon fusion is calculated through NNLO QCD, including its top quark mass dependence. This is achieved through a matching of the 1/mtop expansion of the partonic cross sections to the exact large s-hat limits which are derived from k_T-factorization. The accuracy of this procedure is estimated to be better than 1% for the hadronic cross section. The final result is shown to be within 1% of the commonly used effective theory approach, thus confirming earlier findings.Comment: 28 pages, 14 figure
    • …
    corecore